Differences in the η^{1}-ligating properties of 2,4,6-tritertiarybutyl-phosphabenzene, $\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}$ and 2,4,6-tritertiarybutyl-1,3,5-triphosphabenzene, $\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}$

Scott B. Clendenning, Peter B. Hitchcock, Gerard A. Lawless, John F. Nixon *, Christopher W. Tate
Chemistry Department, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ Sussex, UK

A R T I C L E I N F O

Article history:

Received 13 November 2009
Received in revised form 3 December 2009
Accepted 8 December 2009
Available online 28 December 2009

Keywords:

Phosphabenzene
Triphosphabenzene
Complexes
Palladium
Platinum
Gold

Abstract

Several η^{1}-complexes of 2,4,6-tritertiarybutylphosphabenzene, $\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}$, have been synthesised and structurally characterised including trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{Bu}_{3}^{t}\right)\right]$, cis- $\left[\mathrm{PdCl}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{CHMe}\left(\mathrm{NMe}_{2}\right)\left(\eta^{1}-\right.\right.\right.$ $\left.\left.\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right]$ and $\left[\mathrm{AuCl}\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right]$. NMR spectroscopic evidence is presented for the partial isomerisation in solution of the 2,4,6-tritertiarybutyl-1,3,5-triphosphabenzene complexes trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)\left(\eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}\right)\right],\left(\mathrm{PR}_{3}=\mathrm{PMe}_{3}\right.$ and $\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)$, to the corresponding cis-isomers.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Although previous studies have shown that the 2,4,6-trite-rtiarybutyl-1,3,5-triphosphabenzene ring 1 readily acts as a 6π electron donor towards metal centres [1-3], the only reported examples of η^{1}-bonded metal complexes are trans-$\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)\left(\eta^{1}-\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}\right)\right]\left(\mathrm{PR}_{3}=\mathrm{PMe}_{3}, \mathrm{PEt}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{PMePh}_{2}\right)$ $[4,5]$. We therefore sought to investigate the relative σ-bonding properties of the structurally related 2,4,6-tritertiarybutylphosphabenzene, $\mathrm{PC}_{5} \mathrm{Bu}_{3}^{t} \mathbf{2}$ and $\mathbf{1}$, in view of current interest in the catalytic potential of these types of sp^{2}-hybridised phosphoruscontaining rings and related phosphabarrelenes [6-14].

Recently, we showed for the first time that both 1 and 2 could be protonated, alkylated and silylated at phosphorus using appropriate electrophilic reagents having halogenated carborane anions [15], despite the extremely weakly basic and poor nucleophilic nature of both ring systems [10,15-17]. We now report on the unexpected and strikingly different σ-ligating ability of the two rings $\mathbf{1}$ and 2 toward platinum metals. Although the coordination chemistry of several monophosphinine ring systems has been widely studied $[10,12]$, only a few σ-complexes of 2 have been structurally characterised $[15,18]$. We now describe the syntheses and single-crystal X-ray structural characterisation of the 2,4,6tritertiarybutylphosphabenzene complexes trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left(\eta^{1}-\right.\right.$ $\left.\left.\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right]$, cis-[$\mathrm{PdCl}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{CHMe}\left(\mathrm{NMe}_{2}\right)\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right] \quad$ and

[^0]$\left[\mathrm{AuCl}\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right]$. We also have carried out ${ }^{31} \mathrm{P}$ NMR spectroscopic experiments which show that some trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)\left(\eta^{1}-\right.\right.$ $\left.\left.\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}\right)\right]$ complexes undergo partial isomerisation to the cis-isomer at ambient temperature.

2. Results and discussion

The attempted reaction of $\mathbf{1}$ with di- μ-chloro-bis[(R)-di-methyl(1-ethyl- α-naphthyl)-aminato- ${ }^{2}$, N] palladium(II), 3 [19] (Fig. 1), or [AuCl(tht)] only resulted in the recovery of unreacted starting materials, as shown by ${ }^{31}$ P NMR spectroscopic monitoring, the only observed resonance being that characteristic of $\mathbf{1}$ ($\delta_{\mathrm{P}}=232 \mathrm{ppm}$). Changing the solvent and/or varying the reaction temperatures produced no observable effect. Complex $\mathbf{3}$ was chosen in an attempt to obtain the first chiral triphosphabenzene complex, while [$\mathrm{AuCl}($ tht $)]$ (tht = tetrahydrothiophen) normally readily exchanges its very labile (tht) on treatment with tertiary phosphines.

This surprising lack of reactivity of $\mathbf{1}$ (which we had also noted previously [5] towards a variety of metal halides in different oxidation states e.g. $\mathrm{TiCl}_{4}, \mathrm{SnCl}_{4}, \mathrm{RhCl}_{3}, \mathrm{PdCl}_{2}$ and PtCl_{2}), no doubt reflects the significant s-character of the phosphorus lone-pair electrons in 1.

On the other hand, treatment of $\mathbf{2}$ with $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{R}=\mathrm{PEt}_{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ readily resulted in the formation of trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left(\eta^{1}-\right.\right.$ $\left.\left.\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right] \mathbf{4}$ whose ${ }^{31} \mathrm{P}$ NMR spectrum shows the characteristically large trans $\mathrm{P}-\mathrm{P}$ coupling constant; (ring phosphorus $\delta_{\mathrm{P}}=161.4 \mathrm{ppm} ;\left({ }^{2} J\left(\mathrm{P}_{2} \mathrm{P}_{1}\right) 526.8 \mathrm{~Hz} ;{ }^{1} J\left(\mathrm{PtP}_{1}\right) 2520 \mathrm{~Hz} ; \mathrm{PEt}_{3} \delta_{\mathrm{P}}\right.$ $=10.9 \mathrm{ppm}\left({ }^{2} J\left(\mathrm{P}_{2} \mathrm{P}_{1}\right) 526.9 \mathrm{~Hz},{ }^{1} \mathrm{~J}\left(\mathrm{PtP}_{2}\right) 2935 \mathrm{~Hz}\right)$. Comparable coupling constant data found in the related triphosphabenzene complex trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left(\eta^{1}-\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}\right)\right] \mathbf{5}$ are ${ }^{2} \mathrm{~J}\left(\mathrm{P}_{2} \mathrm{P}_{1}\right) 508.5 \mathrm{~Hz}$; ${ }^{1} J\left(\mathrm{PtP}_{1}\right) 2378 \mathrm{~Hz}$; and $\left.{ }^{1} J\left(\mathrm{PtP}_{2}\right) 2884 \mathrm{~Hz}\right)$ [4]. The slightly higher ${ }^{1} J\left(\mathrm{PtP}_{1}\right)$ ring couplings for $\mathbf{4}$ probably reflect the slightly greater s-character in the monophosphabenzene system 1 than in $\mathbf{2}$, reflecting the greater overall electron withdrawing properties of phosphorus compared with carbon, which we previously established by both PE measurements and DFT calculations [20].

Structural characterisation of 4 was established by a singlecrystal X-ray diffraction study and its molecular structure is shown in Fig. 2, together with selected bond lengths and angles.

In contrast to the unreactivity of $\mathbf{1}$. treatment of $\mathbf{2}$ with 0.5 equivalents of the palladium complex $\mathbf{3}$ readily results in the for-

3
Fig. 1. Di- μ-chloro-bis[(R)-dimethyl(1-ethyl- α-naphthyl)-aminato- $\left.{ }^{2}, \mathrm{~N}\right]$ palladium(II).

Fig. 2. Molecular structure of trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right]$ 4. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: $\mathrm{Pt}-\mathrm{P}(2)$ 2.285(2), $\mathrm{Pt}-\mathrm{Cl}(2)$ 2.309(2), $\mathrm{Pt}-\mathrm{Cl}(1)$ 2.320(2), $\mathrm{Pt}-$ $\mathrm{P}(1) 2.335(2), \mathrm{P}(1)-\mathrm{C}(5) 1.726(8), \mathrm{P}(1)-\mathrm{C}(1) 1.741(8), \mathrm{C}(4)-\mathrm{C}(5) 1.397(11), \mathrm{C}(2)-$ $\mathrm{C}(3) 1.391(11), \mathrm{C}(3)-\mathrm{C}(4) 1.394(11), \mathrm{C}(1)-\mathrm{C}(2) 1.391(11) . \mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(1) 107.3(4)$, C(5)-P(1)-Pt 126.5(3), C(1)-P(1)-Pt 125.9(3), C(2)-C(1)-C(6) 121.2(7), C(2)-C(1)$\mathrm{P}(1) 118.8(6), \mathrm{C}(6)-\mathrm{C}(1)-\mathrm{P}(1) 120.0(6), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 127.4(7), \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ 120.1(7), C(4)-C(5)-P(1) 118.3(6), C(3)-C(4)-C(5) 128.0(7).
mation of $\left[\mathrm{PdCl}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{CHMeNMe}_{2}\right)\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right]$ 6. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{6}$ exhibits a single resonance ($\delta_{\mathrm{P}}=167.6 \mathrm{ppm}$) corresponding to the η^{1}-Pt-bonded phosphorus atom. Interestingly, the ${ }^{31}$ P resonance of 2 was often observed in solution (δ_{P} $=180 \mathrm{ppm}$), indicating that an equilibrium exists between complex $\mathbf{6}$ and the free ring. In support of these observations, recrystallisation of the reaction mixture often yielded crystals of both $\mathbf{6}$ and $\mathbf{3}$ even if $\mathbf{2}$ were present in excess. A single-crystal X-ray diffraction study revealed the molecular structure of $\mathbf{6}$, which is presented in Fig. 3, together with selected bond lengths and angles.

The facile reaction of 2 with [$\mathrm{AuCl}(\mathrm{tht})]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affords 7 whose ${ }^{31} \mathrm{P}$ NMR spectrum shows a single resonance (δ_{P} $=154.6 \mathrm{ppm}$), which is appreciably shifted to low frequency compared to the resonance observed for the free ring. A single-crystal X-ray diffraction study confirms the molecular structure of $\mathbf{7}$ shown in Fig. 4, together with selected bond length and angle data.

As expected, the geometry around the metal centre is linear and the $\mathrm{Au}-\mathrm{P}(2.2194(15) \AA$) distance is not unusual for this type of complex. Interestingly the AuCl fragment projects out from the sp^{2}-hybridised ring P and above the plane of the aromatic ring with a ring plane-Au-P angle of approximately 12.3°. A detailed comparison of bond lengths and other structural features is not possible since the molecular structure of the free ring $\mathbf{2}$ is yet to be determined.

In summary, we have show that the σ-donor properties of the 2,4,6-tritertiarybutyl-1,3,5-triphosphabenzene ring $\mathbf{1}$ towards transition metals are significantly less than those of the corresponding 2,4,6-tritertiarybutylphosphabenzene ring 2 despite the P lone-pair electrons in both aromatic rings being flanked by two bulky $C^{t} B u$ substituents. Furthermore, although the structurally confirmed trans-stereochemistry of $\mathbf{4}$ is in full agreement with that originally proposed by us [4] for the analogous 2,4,6-tritertiarybu-tyl-1,3,5-triphosphabenzene systems, we propose that both are the kinetic rather than thermodynamic products in view of ${ }^{31} \mathrm{P}$ NMR spectroscopic studies (vide infra).

Fig. 3. Molecular structure of cis-[$\left.\mathrm{PdCl}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{CHMNNMe}_{2}\right)\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right] 6$. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Pd}-\mathrm{C}(18)$ 2.008(4), $\mathrm{Pd}-\mathrm{N} 2.112(3)$, $\mathrm{Pd}-\mathrm{P}$ 2.2358(11), Pd-Cl 2.4057(11), P-C(1) 1.716(4), P-C(5) 1.729(4), C(1)-C(2) 1.386(6), $C(4)-C(5) 1.392(6), C(3)-C(4) 1.400(6), C(2)-C(3) 1.401(6) . C(18)-P d-N 81.27(14)$, $\mathrm{C}(18)-\mathrm{Pd}-\mathrm{P}$ 93.23(12), $\mathrm{N}-\mathrm{Pd}-\mathrm{P}$ 172.91(9), $\mathrm{C}(18)-\mathrm{Pd}-\mathrm{Cl} 175.31(12), \mathrm{N}-\mathrm{Pd}-\mathrm{Cl}$ 94.88(9), P-Pd-Cl 90.80(4), C(1)-P-C(5) 106.6(2), C(1)-P-Pd 126.11(14), C(5)-PPd 126.35(15), C(2)-C(1)-P 120.2(3), C(4)-C(5)-P 119.3(3), C(5)-C(4)-C(3) 127.0(4), C(1)-C(2)-C(3) 126.6(4), C(4)-C(3)-C(2) 120.2(4).

Fig. 4. Molecular structure of $\left[\mathrm{AuCl}\left(\eta-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right]$. 7. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Au}-\mathrm{P} 2.2194(15), \mathrm{Au}-\mathrm{Cl} 2.2654(17), \mathrm{P}-\mathrm{C}(1) 1.726(4), \mathrm{C}(1)-\mathrm{C}(2) 1.387$ (5), $\mathrm{C}(3)-\mathrm{C}(2) 1.398(5) . \quad \mathrm{P}-\mathrm{Au}-\mathrm{Cl}$ 177.76(6), $\mathrm{C}(1)^{\prime}-\mathrm{P}-\mathrm{C}(1)$ 108.0(3), $\mathrm{C}(1)-\mathrm{P}-\mathrm{Au}$ 125.29(13), $C(2)-C(3)-C(2)^{\prime} \quad 120.8(5), \quad C(1)-C(2)-C(3) \quad 127.0(4), \quad C(2)-C(1)-P$ 118.5(3).

Fig. 5. Trans- to cis-isomerisation of $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\left(\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}\right)\right]$.
Thus, as previously reported,[4], the reaction of the chloro-bridged dimers $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with triphosphabenzene $\mathbf{1}$ immediately quantitatively afforded the trans $-\eta^{1}$-complexes $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)\left(\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}\right)\right]\left(\mathrm{PR}_{3}=\mathrm{PEt}_{3} \mathbf{5}, \mathrm{PMe}_{3} \mathbf{8}, \mathrm{PMe}_{2} \mathrm{Ph} 9\right.$ and PMePh_{2} 10) which were fully spectroscopically characterised by ${ }^{31} \mathrm{P}$ and ${ }^{195}$ Pt NMR spectroscopy as the sole products.

In more detailed solution NMR studies we have found that a slow isomerisation process takes place in some (but not all) of the above systems. In the case of the trans-complexes $\mathbf{8}$ and 9 a spontaneous partial isomerisation to the cis-isomers $\mathbf{8 a}$ and $9 \mathbf{9 a}$ is observed at room temperature (Fig. 5), the relatively slow rate of isomerisation being easily followed by comparison of the relative intensities of the peaks in the ${ }^{31} \mathrm{P}$ NMR spectrum corresponding to each isomer (data are listed in Section 3). The ratio of isomers observed at different times were found to be (i) 8: cis:trans $=0: 100$ (40 min); 2:98 (5 h); 20:80 (20 h); 26:74 (22 h). (ii) 9: cis:trans $=3: 97$ (30 min); 47:53 (17 h); 57:43 (41 h) whence it can be seen that both the rate of formation and degree of conversion from trans- to cis-isomers are higher for 9 than for $\mathbf{8}$. Thus, although the trans-isomer is formed initially as the kinetic product of the bridge splitting reactions, the thermodynamically favoured product is the cis-isomer.

3. Experimental

Standard Schlenk tube procedures were employed and all solvents were rigorously dried and redistilled before use. Starting materials and metal complexes were made by published literature procedures.

3.1. Preparation of trans-[PtCl $\left.\left(\mathrm{PR}_{3}\right)\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right] \mathbf{4}$

$\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\left(0.1 \mathrm{~g}, 3.8 \times 10^{-4} \mathrm{~mol}\right)$ and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{PEt}_{3}\right)_{2}\right](0.145 \mathrm{~g}$, $\left.1.98 \times 10^{-4} \mathrm{~mol}\right)$ were combined and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$.

After stirring for 12 h , the solvent was removed to give the product as a yellow solid. n-Pentane (5 ml) was added to a sample of the product $\sim 80 \mathrm{mg}$ and the resulting suspension was filtered hot into a round-bottomed flask. After 1 month at room temperature yellow crystals of the product were obtained. Yield $=180 \mathrm{mg}, 73 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 8.10, 8.05 (m , ring H's), 1.96 ($\mathrm{m}, 6 \mathrm{H}$, $\mathrm{P}\left\{\mathrm{CH}_{2} \mathrm{CH}_{3}\right\}_{3}$), $1.79\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Bu}^{t}\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right), 1.27,1.23$ (2 overlapping $\left.\mathrm{t}, 9 \mathrm{H}, \mathrm{P}\left\{\mathrm{CH}_{2} \mathrm{CH}_{3}\right\}_{3}, 7.61 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 161.9 \mathrm{MHz}\right)$: $\left(\delta_{\mathrm{P}}=161.4\left(\mathrm{~d}\right.\right.$, ring $\left.\mathrm{P},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right) 526.8,{ }^{1} J\left(\mathrm{PtP}_{\mathrm{A}}\right) 2520 \mathrm{~Hz}\right),\left(\delta_{\mathrm{P}}=10.9(\mathrm{~d}\right.$, $\left.\mathrm{PEt}_{3},{ }^{2} J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{A}}\right) 526.9,{ }^{1} \mathrm{~J}(\mathrm{PtPx}) 2935 \mathrm{~Hz}\right)$.

Crystal data for 4: $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}, M=648.51$, monoclinic, space group $P 2_{1} / n \quad$ (No.14), $\quad a=11.9240(3) \AA, \quad b=15.9942(5) \AA$, $c=15.1677(3) \AA, \beta=107.503(2)^{\circ}, V=2758.78(12) \AA^{3}, T=173(2) \mathrm{K}$, $Z=4, D_{c}=1.56 \mathrm{Mg} \mathrm{m}^{3}, \mu=5.40 \mathrm{~mm}^{-1}, \lambda=0.71073 \AA$ Á, crystal size $0.15 \times 0.10 \times 0.10 \mathrm{~mm}^{3}, 20506$ measured reflections, 5394 independent reflections, 4472 reflections with $I>2 \sigma(I)$, Final indices $R_{1}=0.043, w R_{2}=0.097$ for $I>2 \sigma(I), R_{1}=0.057, w R_{2}=0.102$ for all data. Data collection: KappaCCD, Program package wingx, Abs correction MULTISCAN Refinement using shelxl-97, Drawing using OR-TEP-3 for Windows. There are two residual peaks of ca. 2 e \AA^{-3} which make no chemical sense and are assumed to be artifacts

3.2. Preparation of $\left[\mathrm{PdCl}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{CHMe}\left(\mathrm{NMe}_{2}\right)\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu} u_{3}^{t}\right)\right] \mathbf{6}\right.$

$\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t} \quad\left(0.035 \mathrm{~g}, \quad 1.3 \times 10^{-4} \mathrm{~mol}\right)$ and $\quad \mathbf{5}(0.044 \mathrm{~g}$, $6.5 \times 10^{-5} \mathrm{~mol}$) were combined, dissolved in toluene and stirred vigorously for 24 hours. The solution was reduced to 2 ml in volume and filtered hot into a round-bottomed flask. Storage at $-50^{\circ} \mathrm{C}$ for 1 week resulted in yellow crystals. Yield $=28 \mathrm{mg}, 35 \%$. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 161.9 \mathrm{MHz}\right)$: $\left(\delta_{\mathrm{P}}=167.6\right.$ (s, ring P).

Crystal data for 6: $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{CINPPd}$. $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right), M=696.63$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=12.1168(3) \AA, \quad b=$ 13.9137(2) $\AA, \quad c=21.5795(5) \AA, \quad V=3638.08(13) \AA^{3}, \quad T=173(2) K$, $Z=4, D_{c}=1.27 \mathrm{Mg} \mathrm{m}^{3}, \mu=0.65 \mathrm{~mm}^{-1}, \lambda=0.71073 \AA$, crystal size $0.25 \times 0.25 \times 0.10 \mathrm{~mm}^{3}, 23598$ measured reflections, 7120 independent reflections, 6164 reflections with $I>2 \sigma(I)$, Final indices $R_{1}=0.039, w R_{2}=0.083$ for $I>2 \sigma(I), R_{1}=0.052, w R_{2}=0.090$ for all data. Data collection: KappaCCD, Program package wingx, Abs correction MULTISCAN Refinement using shelxi-97, Drawing using OR-TEP-3 for Windows. The disordered methyl C atoms for the $\mathrm{C}(6)^{t} \mathrm{Bu}$ group were left isotropic.

3.3. Preparation of $\left[\mathrm{AuCl}\left(\eta^{1}-\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{t}\right)\right] 7$

$\mathrm{PC}_{5} \mathrm{H}_{2} \mathrm{Bu}_{3}^{\mathrm{t}}\left(0.03 \mathrm{~g}, 1.1 \times 10^{-4} \mathrm{~mol}\right)$ and $[\mathrm{AuCl}($ tht $)](0.036 \mathrm{~g}$, $1.1 \times 10^{-4} \mathrm{~mol}$) were combined and dissolved in toluene (20 ml). After stirring for 20 h , the solvent was removed and the remaining solid dissolved in n-pentane (5 ml). The solution was filtered hot into a round-bottomed flask and stored at room temperature for 1 week. Colourless crystals of the product were obtained. Yield $=45 \mathrm{mg}, 80 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 7.95, 7.89 (s, ring H's), $1.41\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Bu}^{t}\right), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$, 161.9 MHz): ($\delta_{\mathrm{P}}=154.6$ (s , ring P).

Crystal data for 7: $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{AuClP}, \mathrm{M}=496.79$, monoclinic, space group $P 2_{1} / m \quad($ No. 11), $\quad a=6.1103(1) \AA, \quad b=15.5516(5) \AA$, $c=10.2639(3) \AA, \quad \beta=104.442(2)^{\circ}, \quad V=944.51(4) \AA^{3}, \quad T=173(2) \mathrm{K}$, $Z=2, D_{c}=1.75 \mathrm{Mg} \mathrm{m}^{3}, \mu=8.01 \mathrm{~mm}^{-1}, \lambda=0.71073 \AA$, crystal size $0.25 \times 0.20 \times 0.10 \mathrm{~mm}^{3}, 14613$ measured reflections, 1912 independent reflections, 1805 reflections with $I>2 \sigma(I)$, Final indices $R_{1}=0.028, w R_{2}=0.072$ for $I>2 \sigma(I), R_{1}=0.030, w R_{2}=0.074$ for all data. Data collection: KappaCCD, Program package wingx, Abs correction MULTISCAN Refinement using shelxı-97, Drawing using OR-TEP-3 for Windows. The molecule lies on a crystallographic mirror plane.
3.4. Formation of cis-[PtCl $\left.2_{2}\left(P R_{3}\right)\left(\eta^{1}-P_{3} C_{3} B u_{3}^{t}\right)\right]\left(R=P M e_{3} 8 a, P M e_{2} P h\right.$ 9a) from the corresponding trans-isomers
$\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}$ and 0.5 molar equivalents of $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)\right]_{2}\left(\mathrm{PR}_{3}=\mathrm{PMe}_{3}\right.$, $\mathrm{PMe}_{2} \mathrm{Ph}$) were combined, dissolved in a minimal volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3} and the solution stirred for 30 min to afford a yellow solution of trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)\left(\eta^{1}-\mathrm{P}_{3} \mathrm{C}_{3} \mathrm{Bu}_{3}^{t}\right)\right]\left(\mathrm{PR}_{3}=\mathrm{PMe}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}\right)$ in quantitative yield. Removal of the solvent in vacuo yielded a yellow powder. Trans- to cis-isomerism was monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy: Compound 8: cis:trans $=0: 100$ (40 min); 2:98 (5 h); 20:80 (20 h); 26:74 (22 h). Compound 9: cis:trans $=3: 97$ (30 min); 47:53 (17 h); 57:43 (41 h).
${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR data for trans-isomers $\mathbf{8}$ and 9 : (δ_{P} in ppm; J in Hz) (8): ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\mathrm{AB}_{2} \mathrm{XY}$ system, $\delta_{\mathrm{P}}=264.8$ [d, $\left.{ }^{2} J_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})} 36.3, \mathrm{P}(\mathrm{B})\right] ; \delta_{\mathrm{P}}=203.0$ [dt; ${ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 543.3,{ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})} 36.3$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{A})} 2418 ; \mathrm{P}(\mathrm{A})\right] ; \delta_{\mathrm{P}}=-18.3$ [d; ${ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 543.3,{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{X})} 2886$; $\mathrm{P}(\mathrm{X})$]. ${ }^{195} \mathrm{Pt}$ NMR ($107.496 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-3705\left(\mathrm{dd} ;{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{A})}\right.$ 2418, $\left.{ }^{1} J_{\operatorname{PtP}(\mathrm{X})} 2886\right) .(9): \delta_{\mathrm{P}}=265.4\left[\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})} 36.6, \mathrm{P}(\mathrm{B})\right]$; $\delta_{\mathrm{P}}=202.5$ [dt; ${ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 543.6,{ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A})(\mathrm{B})} 36.6,{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{A})} 2487 ; \mathrm{P}(\mathrm{A})$]; $\delta_{\mathrm{P}}=-11.4$ [d; $\left.{ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 543.6,{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{X})} 2920 ; \mathrm{P}(\mathrm{X})\right] .{ }^{195} \mathrm{Pt}$ NMR ($107.496 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-3710$ (dd; $\left.{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{A})} 2487,{ }^{1} J_{\mathrm{PtP}(\mathrm{X})} 2884\right)$.
${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR data for cis-isomers 8a and 9a: (8a): ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\mathrm{AB}_{2} \mathrm{XY}$ system, $\delta_{\mathrm{P}}=274.2$ [d, ${ }^{2} \mathrm{JP}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})} 42.0$, $\mathrm{P}(\mathrm{B})] ; \delta_{\mathrm{P}}=173.3$ [td; ${ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})} 42.0,{ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 25.3,{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{A})} 4196$; $\mathrm{P}(\mathrm{A})] ; \delta_{\mathrm{P}}=-23.2 \quad\left[\mathrm{~d} ;{ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 25.3,{ }^{1} \mathrm{~J}_{\mathrm{PtP}(\mathrm{X})} 3261 ; \mathrm{P}(\mathrm{X})\right]$. (9a): $\delta=275.9$ [d, $\left.{ }^{2} J_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})} 42.2, \mathrm{P}(\mathrm{B})\right] ; \delta_{\mathrm{P}}=172.2$ [td; ${ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})} 42.2$, $\left.{ }^{2} J_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 25.0,{ }^{1} J_{\mathrm{PtP}(\mathrm{A})} 4192 ; \mathrm{P}(\mathrm{A})\right] ; \delta_{\mathrm{P}}=-19.3\left[\mathrm{~d} ;{ }^{2} \mathrm{~J}_{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{X})} 25.0\right.$, ${ }^{1} J_{\operatorname{PtP}(X)}=3352 ; \mathrm{P}(\mathrm{X})$].

Acknowledgements

We thank the EPSRC for post-doctoral support (for CWT), NSERC for a scholarship (for SBC) and Professor S.B. Wild (ANU, Canberra) for providing the sample of compound 3.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2009.12.005.

References

[1] P. Binger, S. Stutzmann, J. Stannek, B. Gabor, R. Mynott, Eur. J. Inorg. Chem (1999) 83.
[2] P.L. Arnold, F.G.N. Cloke, P.B. Hitchcock, J.F. Nixon, J. Am. Chem. Soc. 118 (1996) 7630.
[3] M.D. Francis, C. Holtel, C. Jones, R.P. Rose, Organometallics 24 (2005) 4216.
[4] S.B. Clendenning, P.B. Hitchcock, J.F. Nixon, J. Chem. Soc., Chem. Commun. (1999) 1377.
[5] S.B. Clendenning, D.Phil. Thesis, University of Sussex, 2001.
[6] B. Breit, J. Chem. Soc., Chem. Commun. (1996) 2071.
[7] B. Breit, R. Winde, T. Mackewitz, R. Paciello, K. Harms, Chem. Eur. J. 7 (2001) 3106.
[8] B. Breit, E. Fuchs, J. Chem. Soc., Chem. Commun. (2004) 694.
9] E. Fuchs, M. Keller, B. Breit, Chem. Eur. J. 12 (2006) 6930
[10] P. Le Floch, Coord. Chem. Rev. 250 (2006) 627.
[11] P. Le Floch, Sci. Synth. 15 (2005) 1097.
[12] C. Müller, D. Vogt, J. Chem. Soc., Dalton Trans. (2007) 5505.
[13] M. Blug, C. Guibert, X.-F. Le Goff, N. Mézailles, P. Le Floch, J. Chem. Soc., Chem. Commun. (2009) 201.
[14] P.S. Bäuerlein, I.A. Gonzalez, J.J.M. Weemers, M. Lutz, A.L. Spek, D. Vogt, C. Müller, J. Chem. Soc., Chem. Commun. (2009) 4944.
[15] Y. Zhang, F.S. Tham, J.F. Nixon, C. Taylor, J.C. Green, C.A. Reed, Angew. Chem., Int. Edn. Engl. 47 (2008) 3801.
[16] K.B. Dillon, F. Mathey, J.F. Nixon, in: Phosphorus: The Carbon Copy, John Wiley, New York, 1998.
[17] P. Le Floch, in: F. Mathey (Ed.), Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain, Pergamon, Oxford, 2001, p. 485.
[18] P.L. Arnold, F.G.N. Cloke, P.B. Hitchcock, J. Chem. Soc., Chem. Commun. (1997) 481.
[19] D.G. Allen, G.M. McLaughlin, G.B. Robertson, W.L. Steffen, G. Salem, S.B. Wild, Inorg. Chem. 21 (1982) 1007.
[20] S.B. Clendenning, J.C. Green, J.F. Nixon, J. Chem. Soc., Dalton Trans. (2000) 1507.

[^0]: * Corresponding author.

 E-mail address: J.Nixon@sussex.ac.uk (J.F. Nixon).

